Two theorems on measurable sets and sets having the Baire property
نویسندگان
چکیده
منابع مشابه
Extending Baire property by uncountably many sets
We prove that if ZFC is consistent so is ZFC + “for any sequence (An) of subsets of a Polish space 〈X, τ〉 there exists a separable metrizable topology τ ′ on X with B(X, τ) ⊆ B(X, τ ′), MGR(X, τ ′) ∩ B(X, τ) = MGR(X, τ) ∩B(X, τ) and An Borel in τ ′ for all n.” This is a category analogue of a theorem of Carlson on the possibility of extending Lebesgue measure to any countable collection of sets...
متن کاملRamsey, Lebesgue, and Marczewski Sets and the Baire Property
We investigate the completely Ramsey, Lebesgue, and Marczewski σ-algebras and their relations to the Baire property in the Ellentuck and density topologies. Two theorems concerning the Marczewski σ-algebra (s) are presented. Theorem. In the density topology D, (s) coincides with the σ-algebra of Lebesgue measurable sets. Theorem. In the Ellentuck topology on [ω] , (s)0 is a proper subset of the...
متن کاملSolutions to Congruences Using Sets with the Property of Baire
Hausdorff’s paradoxical decomposition of a sphere with countably many points removed (the main precursor of the Banach-Tarski paradox) actually produced a partition of this set into three pieces A, B, C such that A is congruent to B (i.e., there is an isometry of the set which sends A to B), B is congruent to C, and A is congruent to B ∪ C. While refining the Banach-Tarski paradox, R. Robinson ...
متن کاملBanach-tarski Decompositions Using Sets with the Property of Baire
Perhaps the most strikingly counterintuitive theorem in mathematics is the "Banach-Tarski paradox": A ball in R3 can be decomposed into finitely many pieces which can be rearranged by rigid motions and reassembled to form two balls of the same size as the original. The Axiom of Choice is used to construct the decomposition; the "paradox" is resolved by noting that the pieces cannot be Lebesgue ...
متن کاملA Remark on Sets Having the Steinhaus Property
A point set satisses the Steinhaus property if no matter how it is placed on a plane, it covers exactly one integer lattice point. Whether or not such a set exists, is an open problem. Beck has proved 1] that any bounded set satisfying the Steinhaus property is not Lebesgue measurable. We show that any such set (bounded or not) must have empty interior. As a corollary, we deduce that closed set...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Czechoslovak Mathematical Journal
سال: 1992
ISSN: 0011-4642,1572-9141
DOI: 10.21136/cmj.1992.128364